3.4.80 \(\int \frac {A+B x^2}{x^{3/2} (a+b x^2)^2} \, dx\) [380]

3.4.80.1 Optimal result
3.4.80.2 Mathematica [A] (verified)
3.4.80.3 Rubi [A] (verified)
3.4.80.4 Maple [A] (verified)
3.4.80.5 Fricas [C] (verification not implemented)
3.4.80.6 Sympy [A] (verification not implemented)
3.4.80.7 Maxima [A] (verification not implemented)
3.4.80.8 Giac [A] (verification not implemented)
3.4.80.9 Mupad [B] (verification not implemented)

3.4.80.1 Optimal result

Integrand size = 22, antiderivative size = 289 \[ \int \frac {A+B x^2}{x^{3/2} \left (a+b x^2\right )^2} \, dx=-\frac {5 A b-a B}{2 a^2 b \sqrt {x}}+\frac {A b-a B}{2 a b \sqrt {x} \left (a+b x^2\right )}+\frac {(5 A b-a B) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{4 \sqrt {2} a^{9/4} b^{3/4}}-\frac {(5 A b-a B) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{4 \sqrt {2} a^{9/4} b^{3/4}}-\frac {(5 A b-a B) \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{8 \sqrt {2} a^{9/4} b^{3/4}}+\frac {(5 A b-a B) \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{8 \sqrt {2} a^{9/4} b^{3/4}} \]

output
1/8*(5*A*b-B*a)*arctan(1-b^(1/4)*2^(1/2)*x^(1/2)/a^(1/4))/a^(9/4)/b^(3/4)* 
2^(1/2)-1/8*(5*A*b-B*a)*arctan(1+b^(1/4)*2^(1/2)*x^(1/2)/a^(1/4))/a^(9/4)/ 
b^(3/4)*2^(1/2)-1/16*(5*A*b-B*a)*ln(a^(1/2)+x*b^(1/2)-a^(1/4)*b^(1/4)*2^(1 
/2)*x^(1/2))/a^(9/4)/b^(3/4)*2^(1/2)+1/16*(5*A*b-B*a)*ln(a^(1/2)+x*b^(1/2) 
+a^(1/4)*b^(1/4)*2^(1/2)*x^(1/2))/a^(9/4)/b^(3/4)*2^(1/2)+1/2*(-5*A*b+B*a) 
/a^2/b/x^(1/2)+1/2*(A*b-B*a)/a/b/(b*x^2+a)/x^(1/2)
 
3.4.80.2 Mathematica [A] (verified)

Time = 0.51 (sec) , antiderivative size = 162, normalized size of antiderivative = 0.56 \[ \int \frac {A+B x^2}{x^{3/2} \left (a+b x^2\right )^2} \, dx=\frac {\frac {4 \sqrt [4]{a} \left (-4 a A-5 A b x^2+a B x^2\right )}{\sqrt {x} \left (a+b x^2\right )}+\frac {\sqrt {2} (5 A b-a B) \arctan \left (\frac {\sqrt {a}-\sqrt {b} x}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}\right )}{b^{3/4}}+\frac {\sqrt {2} (5 A b-a B) \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a}+\sqrt {b} x}\right )}{b^{3/4}}}{8 a^{9/4}} \]

input
Integrate[(A + B*x^2)/(x^(3/2)*(a + b*x^2)^2),x]
 
output
((4*a^(1/4)*(-4*a*A - 5*A*b*x^2 + a*B*x^2))/(Sqrt[x]*(a + b*x^2)) + (Sqrt[ 
2]*(5*A*b - a*B)*ArcTan[(Sqrt[a] - Sqrt[b]*x)/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqr 
t[x])])/b^(3/4) + (Sqrt[2]*(5*A*b - a*B)*ArcTanh[(Sqrt[2]*a^(1/4)*b^(1/4)* 
Sqrt[x])/(Sqrt[a] + Sqrt[b]*x)])/b^(3/4))/(8*a^(9/4))
 
3.4.80.3 Rubi [A] (verified)

Time = 0.48 (sec) , antiderivative size = 281, normalized size of antiderivative = 0.97, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {362, 264, 266, 826, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B x^2}{x^{3/2} \left (a+b x^2\right )^2} \, dx\)

\(\Big \downarrow \) 362

\(\displaystyle \frac {(5 A b-a B) \int \frac {1}{x^{3/2} \left (b x^2+a\right )}dx}{4 a b}+\frac {A b-a B}{2 a b \sqrt {x} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 264

\(\displaystyle \frac {(5 A b-a B) \left (-\frac {b \int \frac {\sqrt {x}}{b x^2+a}dx}{a}-\frac {2}{a \sqrt {x}}\right )}{4 a b}+\frac {A b-a B}{2 a b \sqrt {x} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {(5 A b-a B) \left (-\frac {2 b \int \frac {x}{b x^2+a}d\sqrt {x}}{a}-\frac {2}{a \sqrt {x}}\right )}{4 a b}+\frac {A b-a B}{2 a b \sqrt {x} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 826

\(\displaystyle \frac {(5 A b-a B) \left (-\frac {2 b \left (\frac {\int \frac {\sqrt {b} x+\sqrt {a}}{b x^2+a}d\sqrt {x}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {b}}\right )}{a}-\frac {2}{a \sqrt {x}}\right )}{4 a b}+\frac {A b-a B}{2 a b \sqrt {x} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {(5 A b-a B) \left (-\frac {2 b \left (\frac {\frac {\int \frac {1}{x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt {b}}+\frac {\int \frac {1}{x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt {b}}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {b}}\right )}{a}-\frac {2}{a \sqrt {x}}\right )}{4 a b}+\frac {A b-a B}{2 a b \sqrt {x} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {(5 A b-a B) \left (-\frac {2 b \left (\frac {\frac {\int \frac {1}{-x-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\int \frac {1}{-x-1}d\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {b}}\right )}{a}-\frac {2}{a \sqrt {x}}\right )}{4 a b}+\frac {A b-a B}{2 a b \sqrt {x} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {(5 A b-a B) \left (-\frac {2 b \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {b}}\right )}{a}-\frac {2}{a \sqrt {x}}\right )}{4 a b}+\frac {A b-a B}{2 a b \sqrt {x} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {(5 A b-a B) \left (-\frac {2 b \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {-\frac {\int -\frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{b} \left (x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{b} \sqrt {x}+\sqrt [4]{a}\right )}{\sqrt [4]{b} \left (x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}\right )}{a}-\frac {2}{a \sqrt {x}}\right )}{4 a b}+\frac {A b-a B}{2 a b \sqrt {x} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {(5 A b-a B) \left (-\frac {2 b \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{b} \left (x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{b} \sqrt {x}+\sqrt [4]{a}\right )}{\sqrt [4]{b} \left (x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}\right )}{a}-\frac {2}{a \sqrt {x}}\right )}{4 a b}+\frac {A b-a B}{2 a b \sqrt {x} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {(5 A b-a B) \left (-\frac {2 b \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{b} \sqrt {x}}{x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt {b}}+\frac {\int \frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}+\sqrt [4]{a}}{x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt [4]{a} \sqrt {b}}}{2 \sqrt {b}}\right )}{a}-\frac {2}{a \sqrt {x}}\right )}{4 a b}+\frac {A b-a B}{2 a b \sqrt {x} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {(5 A b-a B) \left (-\frac {2 b \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {\frac {\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}\right )}{a}-\frac {2}{a \sqrt {x}}\right )}{4 a b}+\frac {A b-a B}{2 a b \sqrt {x} \left (a+b x^2\right )}\)

input
Int[(A + B*x^2)/(x^(3/2)*(a + b*x^2)^2),x]
 
output
(A*b - a*B)/(2*a*b*Sqrt[x]*(a + b*x^2)) + ((5*A*b - a*B)*(-2/(a*Sqrt[x]) - 
 (2*b*((-(ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)]/(Sqrt[2]*a^(1/4)*b 
^(1/4))) + ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)]/(Sqrt[2]*a^(1/4)* 
b^(1/4)))/(2*Sqrt[b]) - (-1/2*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x 
] + Sqrt[b]*x]/(Sqrt[2]*a^(1/4)*b^(1/4)) + Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b 
^(1/4)*Sqrt[x] + Sqrt[b]*x]/(2*Sqrt[2]*a^(1/4)*b^(1/4)))/(2*Sqrt[b])))/a)) 
/(4*a*b)
 

3.4.80.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 264
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c*x)^( 
m + 1)*((a + b*x^2)^(p + 1)/(a*c*(m + 1))), x] - Simp[b*((m + 2*p + 3)/(a*c 
^2*(m + 1)))   Int[(c*x)^(m + 2)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, p 
}, x] && LtQ[m, -1] && IntBinomialQ[a, b, c, 2, m, p, x]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 362
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2), x 
_Symbol] :> Simp[(-(b*c - a*d))*(e*x)^(m + 1)*((a + b*x^2)^(p + 1)/(2*a*b*e 
*(p + 1))), x] - Simp[(a*d*(m + 1) - b*c*(m + 2*p + 3))/(2*a*b*(p + 1))   I 
nt[(e*x)^m*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && N 
eQ[b*c - a*d, 0] && LtQ[p, -1] && (( !IntegerQ[p + 1/2] && NeQ[p, -5/4]) || 
  !RationalQ[m] || (ILtQ[p + 1/2, 0] && LeQ[-1, m, -2*(p + 1)]))
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
3.4.80.4 Maple [A] (verified)

Time = 2.70 (sec) , antiderivative size = 153, normalized size of antiderivative = 0.53

method result size
derivativedivides \(-\frac {2 \left (\frac {\left (\frac {A b}{4}-\frac {B a}{4}\right ) x^{\frac {3}{2}}}{b \,x^{2}+a}+\frac {\left (\frac {5 A b}{4}-\frac {B a}{4}\right ) \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{8 b \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{a^{2}}-\frac {2 A}{a^{2} \sqrt {x}}\) \(153\)
default \(-\frac {2 \left (\frac {\left (\frac {A b}{4}-\frac {B a}{4}\right ) x^{\frac {3}{2}}}{b \,x^{2}+a}+\frac {\left (\frac {5 A b}{4}-\frac {B a}{4}\right ) \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{8 b \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{a^{2}}-\frac {2 A}{a^{2} \sqrt {x}}\) \(153\)
risch \(-\frac {2 A}{a^{2} \sqrt {x}}-\frac {\frac {2 \left (\frac {A b}{4}-\frac {B a}{4}\right ) x^{\frac {3}{2}}}{b \,x^{2}+a}+\frac {\left (\frac {5 A b}{4}-\frac {B a}{4}\right ) \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{4 b \left (\frac {a}{b}\right )^{\frac {1}{4}}}}{a^{2}}\) \(154\)

input
int((B*x^2+A)/x^(3/2)/(b*x^2+a)^2,x,method=_RETURNVERBOSE)
 
output
-2/a^2*((1/4*A*b-1/4*B*a)*x^(3/2)/(b*x^2+a)+1/8*(5/4*A*b-1/4*B*a)/b/(a/b)^ 
(1/4)*2^(1/2)*(ln((x-(a/b)^(1/4)*x^(1/2)*2^(1/2)+(a/b)^(1/2))/(x+(a/b)^(1/ 
4)*x^(1/2)*2^(1/2)+(a/b)^(1/2)))+2*arctan(2^(1/2)/(a/b)^(1/4)*x^(1/2)+1)+2 
*arctan(2^(1/2)/(a/b)^(1/4)*x^(1/2)-1)))-2*A/a^2/x^(1/2)
 
3.4.80.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.28 (sec) , antiderivative size = 789, normalized size of antiderivative = 2.73 \[ \int \frac {A+B x^2}{x^{3/2} \left (a+b x^2\right )^2} \, dx=-\frac {{\left (a^{2} b x^{3} + a^{3} x\right )} \left (-\frac {B^{4} a^{4} - 20 \, A B^{3} a^{3} b + 150 \, A^{2} B^{2} a^{2} b^{2} - 500 \, A^{3} B a b^{3} + 625 \, A^{4} b^{4}}{a^{9} b^{3}}\right )^{\frac {1}{4}} \log \left (a^{7} b^{2} \left (-\frac {B^{4} a^{4} - 20 \, A B^{3} a^{3} b + 150 \, A^{2} B^{2} a^{2} b^{2} - 500 \, A^{3} B a b^{3} + 625 \, A^{4} b^{4}}{a^{9} b^{3}}\right )^{\frac {3}{4}} - {\left (B^{3} a^{3} - 15 \, A B^{2} a^{2} b + 75 \, A^{2} B a b^{2} - 125 \, A^{3} b^{3}\right )} \sqrt {x}\right ) + {\left (-i \, a^{2} b x^{3} - i \, a^{3} x\right )} \left (-\frac {B^{4} a^{4} - 20 \, A B^{3} a^{3} b + 150 \, A^{2} B^{2} a^{2} b^{2} - 500 \, A^{3} B a b^{3} + 625 \, A^{4} b^{4}}{a^{9} b^{3}}\right )^{\frac {1}{4}} \log \left (i \, a^{7} b^{2} \left (-\frac {B^{4} a^{4} - 20 \, A B^{3} a^{3} b + 150 \, A^{2} B^{2} a^{2} b^{2} - 500 \, A^{3} B a b^{3} + 625 \, A^{4} b^{4}}{a^{9} b^{3}}\right )^{\frac {3}{4}} - {\left (B^{3} a^{3} - 15 \, A B^{2} a^{2} b + 75 \, A^{2} B a b^{2} - 125 \, A^{3} b^{3}\right )} \sqrt {x}\right ) + {\left (i \, a^{2} b x^{3} + i \, a^{3} x\right )} \left (-\frac {B^{4} a^{4} - 20 \, A B^{3} a^{3} b + 150 \, A^{2} B^{2} a^{2} b^{2} - 500 \, A^{3} B a b^{3} + 625 \, A^{4} b^{4}}{a^{9} b^{3}}\right )^{\frac {1}{4}} \log \left (-i \, a^{7} b^{2} \left (-\frac {B^{4} a^{4} - 20 \, A B^{3} a^{3} b + 150 \, A^{2} B^{2} a^{2} b^{2} - 500 \, A^{3} B a b^{3} + 625 \, A^{4} b^{4}}{a^{9} b^{3}}\right )^{\frac {3}{4}} - {\left (B^{3} a^{3} - 15 \, A B^{2} a^{2} b + 75 \, A^{2} B a b^{2} - 125 \, A^{3} b^{3}\right )} \sqrt {x}\right ) - {\left (a^{2} b x^{3} + a^{3} x\right )} \left (-\frac {B^{4} a^{4} - 20 \, A B^{3} a^{3} b + 150 \, A^{2} B^{2} a^{2} b^{2} - 500 \, A^{3} B a b^{3} + 625 \, A^{4} b^{4}}{a^{9} b^{3}}\right )^{\frac {1}{4}} \log \left (-a^{7} b^{2} \left (-\frac {B^{4} a^{4} - 20 \, A B^{3} a^{3} b + 150 \, A^{2} B^{2} a^{2} b^{2} - 500 \, A^{3} B a b^{3} + 625 \, A^{4} b^{4}}{a^{9} b^{3}}\right )^{\frac {3}{4}} - {\left (B^{3} a^{3} - 15 \, A B^{2} a^{2} b + 75 \, A^{2} B a b^{2} - 125 \, A^{3} b^{3}\right )} \sqrt {x}\right ) - 4 \, {\left ({\left (B a - 5 \, A b\right )} x^{2} - 4 \, A a\right )} \sqrt {x}}{8 \, {\left (a^{2} b x^{3} + a^{3} x\right )}} \]

input
integrate((B*x^2+A)/x^(3/2)/(b*x^2+a)^2,x, algorithm="fricas")
 
output
-1/8*((a^2*b*x^3 + a^3*x)*(-(B^4*a^4 - 20*A*B^3*a^3*b + 150*A^2*B^2*a^2*b^ 
2 - 500*A^3*B*a*b^3 + 625*A^4*b^4)/(a^9*b^3))^(1/4)*log(a^7*b^2*(-(B^4*a^4 
 - 20*A*B^3*a^3*b + 150*A^2*B^2*a^2*b^2 - 500*A^3*B*a*b^3 + 625*A^4*b^4)/( 
a^9*b^3))^(3/4) - (B^3*a^3 - 15*A*B^2*a^2*b + 75*A^2*B*a*b^2 - 125*A^3*b^3 
)*sqrt(x)) + (-I*a^2*b*x^3 - I*a^3*x)*(-(B^4*a^4 - 20*A*B^3*a^3*b + 150*A^ 
2*B^2*a^2*b^2 - 500*A^3*B*a*b^3 + 625*A^4*b^4)/(a^9*b^3))^(1/4)*log(I*a^7* 
b^2*(-(B^4*a^4 - 20*A*B^3*a^3*b + 150*A^2*B^2*a^2*b^2 - 500*A^3*B*a*b^3 + 
625*A^4*b^4)/(a^9*b^3))^(3/4) - (B^3*a^3 - 15*A*B^2*a^2*b + 75*A^2*B*a*b^2 
 - 125*A^3*b^3)*sqrt(x)) + (I*a^2*b*x^3 + I*a^3*x)*(-(B^4*a^4 - 20*A*B^3*a 
^3*b + 150*A^2*B^2*a^2*b^2 - 500*A^3*B*a*b^3 + 625*A^4*b^4)/(a^9*b^3))^(1/ 
4)*log(-I*a^7*b^2*(-(B^4*a^4 - 20*A*B^3*a^3*b + 150*A^2*B^2*a^2*b^2 - 500* 
A^3*B*a*b^3 + 625*A^4*b^4)/(a^9*b^3))^(3/4) - (B^3*a^3 - 15*A*B^2*a^2*b + 
75*A^2*B*a*b^2 - 125*A^3*b^3)*sqrt(x)) - (a^2*b*x^3 + a^3*x)*(-(B^4*a^4 - 
20*A*B^3*a^3*b + 150*A^2*B^2*a^2*b^2 - 500*A^3*B*a*b^3 + 625*A^4*b^4)/(a^9 
*b^3))^(1/4)*log(-a^7*b^2*(-(B^4*a^4 - 20*A*B^3*a^3*b + 150*A^2*B^2*a^2*b^ 
2 - 500*A^3*B*a*b^3 + 625*A^4*b^4)/(a^9*b^3))^(3/4) - (B^3*a^3 - 15*A*B^2* 
a^2*b + 75*A^2*B*a*b^2 - 125*A^3*b^3)*sqrt(x)) - 4*((B*a - 5*A*b)*x^2 - 4* 
A*a)*sqrt(x))/(a^2*b*x^3 + a^3*x)
 
3.4.80.6 Sympy [A] (verification not implemented)

Time = 138.07 (sec) , antiderivative size = 916, normalized size of antiderivative = 3.17 \[ \int \frac {A+B x^2}{x^{3/2} \left (a+b x^2\right )^2} \, dx=A \left (\begin {cases} \frac {\tilde {\infty }}{x^{\frac {9}{2}}} & \text {for}\: a = 0 \wedge b = 0 \\- \frac {2}{a^{2} \sqrt {x}} & \text {for}\: b = 0 \\- \frac {2}{9 b^{2} x^{\frac {9}{2}}} & \text {for}\: a = 0 \\- \frac {5 a \sqrt {x} \log {\left (\sqrt {x} - \sqrt [4]{- \frac {a}{b}} \right )}}{8 a^{3} \sqrt {x} \sqrt [4]{- \frac {a}{b}} + 8 a^{2} b x^{\frac {5}{2}} \sqrt [4]{- \frac {a}{b}}} + \frac {5 a \sqrt {x} \log {\left (\sqrt {x} + \sqrt [4]{- \frac {a}{b}} \right )}}{8 a^{3} \sqrt {x} \sqrt [4]{- \frac {a}{b}} + 8 a^{2} b x^{\frac {5}{2}} \sqrt [4]{- \frac {a}{b}}} - \frac {10 a \sqrt {x} \operatorname {atan}{\left (\frac {\sqrt {x}}{\sqrt [4]{- \frac {a}{b}}} \right )}}{8 a^{3} \sqrt {x} \sqrt [4]{- \frac {a}{b}} + 8 a^{2} b x^{\frac {5}{2}} \sqrt [4]{- \frac {a}{b}}} - \frac {16 a \sqrt [4]{- \frac {a}{b}}}{8 a^{3} \sqrt {x} \sqrt [4]{- \frac {a}{b}} + 8 a^{2} b x^{\frac {5}{2}} \sqrt [4]{- \frac {a}{b}}} - \frac {5 b x^{\frac {5}{2}} \log {\left (\sqrt {x} - \sqrt [4]{- \frac {a}{b}} \right )}}{8 a^{3} \sqrt {x} \sqrt [4]{- \frac {a}{b}} + 8 a^{2} b x^{\frac {5}{2}} \sqrt [4]{- \frac {a}{b}}} + \frac {5 b x^{\frac {5}{2}} \log {\left (\sqrt {x} + \sqrt [4]{- \frac {a}{b}} \right )}}{8 a^{3} \sqrt {x} \sqrt [4]{- \frac {a}{b}} + 8 a^{2} b x^{\frac {5}{2}} \sqrt [4]{- \frac {a}{b}}} - \frac {10 b x^{\frac {5}{2}} \operatorname {atan}{\left (\frac {\sqrt {x}}{\sqrt [4]{- \frac {a}{b}}} \right )}}{8 a^{3} \sqrt {x} \sqrt [4]{- \frac {a}{b}} + 8 a^{2} b x^{\frac {5}{2}} \sqrt [4]{- \frac {a}{b}}} - \frac {20 b x^{2} \sqrt [4]{- \frac {a}{b}}}{8 a^{3} \sqrt {x} \sqrt [4]{- \frac {a}{b}} + 8 a^{2} b x^{\frac {5}{2}} \sqrt [4]{- \frac {a}{b}}} & \text {otherwise} \end {cases}\right ) + B \left (\begin {cases} \frac {\tilde {\infty }}{x^{\frac {5}{2}}} & \text {for}\: a = 0 \wedge b = 0 \\\frac {2 x^{\frac {3}{2}}}{3 a^{2}} & \text {for}\: b = 0 \\- \frac {2}{5 b^{2} x^{\frac {5}{2}}} & \text {for}\: a = 0 \\\frac {a \log {\left (\sqrt {x} - \sqrt [4]{- \frac {a}{b}} \right )}}{8 a^{2} b \sqrt [4]{- \frac {a}{b}} + 8 a b^{2} x^{2} \sqrt [4]{- \frac {a}{b}}} - \frac {a \log {\left (\sqrt {x} + \sqrt [4]{- \frac {a}{b}} \right )}}{8 a^{2} b \sqrt [4]{- \frac {a}{b}} + 8 a b^{2} x^{2} \sqrt [4]{- \frac {a}{b}}} + \frac {2 a \operatorname {atan}{\left (\frac {\sqrt {x}}{\sqrt [4]{- \frac {a}{b}}} \right )}}{8 a^{2} b \sqrt [4]{- \frac {a}{b}} + 8 a b^{2} x^{2} \sqrt [4]{- \frac {a}{b}}} + \frac {4 b x^{\frac {3}{2}} \sqrt [4]{- \frac {a}{b}}}{8 a^{2} b \sqrt [4]{- \frac {a}{b}} + 8 a b^{2} x^{2} \sqrt [4]{- \frac {a}{b}}} + \frac {b x^{2} \log {\left (\sqrt {x} - \sqrt [4]{- \frac {a}{b}} \right )}}{8 a^{2} b \sqrt [4]{- \frac {a}{b}} + 8 a b^{2} x^{2} \sqrt [4]{- \frac {a}{b}}} - \frac {b x^{2} \log {\left (\sqrt {x} + \sqrt [4]{- \frac {a}{b}} \right )}}{8 a^{2} b \sqrt [4]{- \frac {a}{b}} + 8 a b^{2} x^{2} \sqrt [4]{- \frac {a}{b}}} + \frac {2 b x^{2} \operatorname {atan}{\left (\frac {\sqrt {x}}{\sqrt [4]{- \frac {a}{b}}} \right )}}{8 a^{2} b \sqrt [4]{- \frac {a}{b}} + 8 a b^{2} x^{2} \sqrt [4]{- \frac {a}{b}}} & \text {otherwise} \end {cases}\right ) \]

input
integrate((B*x**2+A)/x**(3/2)/(b*x**2+a)**2,x)
 
output
A*Piecewise((zoo/x**(9/2), Eq(a, 0) & Eq(b, 0)), (-2/(a**2*sqrt(x)), Eq(b, 
 0)), (-2/(9*b**2*x**(9/2)), Eq(a, 0)), (-5*a*sqrt(x)*log(sqrt(x) - (-a/b) 
**(1/4))/(8*a**3*sqrt(x)*(-a/b)**(1/4) + 8*a**2*b*x**(5/2)*(-a/b)**(1/4)) 
+ 5*a*sqrt(x)*log(sqrt(x) + (-a/b)**(1/4))/(8*a**3*sqrt(x)*(-a/b)**(1/4) + 
 8*a**2*b*x**(5/2)*(-a/b)**(1/4)) - 10*a*sqrt(x)*atan(sqrt(x)/(-a/b)**(1/4 
))/(8*a**3*sqrt(x)*(-a/b)**(1/4) + 8*a**2*b*x**(5/2)*(-a/b)**(1/4)) - 16*a 
*(-a/b)**(1/4)/(8*a**3*sqrt(x)*(-a/b)**(1/4) + 8*a**2*b*x**(5/2)*(-a/b)**( 
1/4)) - 5*b*x**(5/2)*log(sqrt(x) - (-a/b)**(1/4))/(8*a**3*sqrt(x)*(-a/b)** 
(1/4) + 8*a**2*b*x**(5/2)*(-a/b)**(1/4)) + 5*b*x**(5/2)*log(sqrt(x) + (-a/ 
b)**(1/4))/(8*a**3*sqrt(x)*(-a/b)**(1/4) + 8*a**2*b*x**(5/2)*(-a/b)**(1/4) 
) - 10*b*x**(5/2)*atan(sqrt(x)/(-a/b)**(1/4))/(8*a**3*sqrt(x)*(-a/b)**(1/4 
) + 8*a**2*b*x**(5/2)*(-a/b)**(1/4)) - 20*b*x**2*(-a/b)**(1/4)/(8*a**3*sqr 
t(x)*(-a/b)**(1/4) + 8*a**2*b*x**(5/2)*(-a/b)**(1/4)), True)) + B*Piecewis 
e((zoo/x**(5/2), Eq(a, 0) & Eq(b, 0)), (2*x**(3/2)/(3*a**2), Eq(b, 0)), (- 
2/(5*b**2*x**(5/2)), Eq(a, 0)), (a*log(sqrt(x) - (-a/b)**(1/4))/(8*a**2*b* 
(-a/b)**(1/4) + 8*a*b**2*x**2*(-a/b)**(1/4)) - a*log(sqrt(x) + (-a/b)**(1/ 
4))/(8*a**2*b*(-a/b)**(1/4) + 8*a*b**2*x**2*(-a/b)**(1/4)) + 2*a*atan(sqrt 
(x)/(-a/b)**(1/4))/(8*a**2*b*(-a/b)**(1/4) + 8*a*b**2*x**2*(-a/b)**(1/4)) 
+ 4*b*x**(3/2)*(-a/b)**(1/4)/(8*a**2*b*(-a/b)**(1/4) + 8*a*b**2*x**2*(-a/b 
)**(1/4)) + b*x**2*log(sqrt(x) - (-a/b)**(1/4))/(8*a**2*b*(-a/b)**(1/4)...
 
3.4.80.7 Maxima [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 222, normalized size of antiderivative = 0.77 \[ \int \frac {A+B x^2}{x^{3/2} \left (a+b x^2\right )^2} \, dx=\frac {{\left (B a - 5 \, A b\right )} x^{2} - 4 \, A a}{2 \, {\left (a^{2} b x^{\frac {5}{2}} + a^{3} \sqrt {x}\right )}} + \frac {{\left (B a - 5 \, A b\right )} {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} + 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} - 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} - \frac {\sqrt {2} \log \left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {1}{4}} b^{\frac {3}{4}}} + \frac {\sqrt {2} \log \left (-\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {1}{4}} b^{\frac {3}{4}}}\right )}}{16 \, a^{2}} \]

input
integrate((B*x^2+A)/x^(3/2)/(b*x^2+a)^2,x, algorithm="maxima")
 
output
1/2*((B*a - 5*A*b)*x^2 - 4*A*a)/(a^2*b*x^(5/2) + a^3*sqrt(x)) + 1/16*(B*a 
- 5*A*b)*(2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) + 2*sqrt(b 
)*sqrt(x))/sqrt(sqrt(a)*sqrt(b)))/(sqrt(sqrt(a)*sqrt(b))*sqrt(b)) + 2*sqrt 
(2)*arctan(-1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) - 2*sqrt(b)*sqrt(x))/sqrt 
(sqrt(a)*sqrt(b)))/(sqrt(sqrt(a)*sqrt(b))*sqrt(b)) - sqrt(2)*log(sqrt(2)*a 
^(1/4)*b^(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a))/(a^(1/4)*b^(3/4)) + sqrt(2)* 
log(-sqrt(2)*a^(1/4)*b^(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a))/(a^(1/4)*b^(3/ 
4)))/a^2
 
3.4.80.8 Giac [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 278, normalized size of antiderivative = 0.96 \[ \int \frac {A+B x^2}{x^{3/2} \left (a+b x^2\right )^2} \, dx=\frac {B a x^{2} - 5 \, A b x^{2} - 4 \, A a}{2 \, {\left (b x^{\frac {5}{2}} + a \sqrt {x}\right )} a^{2}} + \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {3}{4}} B a - 5 \, \left (a b^{3}\right )^{\frac {3}{4}} A b\right )} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} + 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{8 \, a^{3} b^{3}} + \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {3}{4}} B a - 5 \, \left (a b^{3}\right )^{\frac {3}{4}} A b\right )} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} - 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{8 \, a^{3} b^{3}} - \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {3}{4}} B a - 5 \, \left (a b^{3}\right )^{\frac {3}{4}} A b\right )} \log \left (\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{16 \, a^{3} b^{3}} + \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {3}{4}} B a - 5 \, \left (a b^{3}\right )^{\frac {3}{4}} A b\right )} \log \left (-\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{16 \, a^{3} b^{3}} \]

input
integrate((B*x^2+A)/x^(3/2)/(b*x^2+a)^2,x, algorithm="giac")
 
output
1/2*(B*a*x^2 - 5*A*b*x^2 - 4*A*a)/((b*x^(5/2) + a*sqrt(x))*a^2) + 1/8*sqrt 
(2)*((a*b^3)^(3/4)*B*a - 5*(a*b^3)^(3/4)*A*b)*arctan(1/2*sqrt(2)*(sqrt(2)* 
(a/b)^(1/4) + 2*sqrt(x))/(a/b)^(1/4))/(a^3*b^3) + 1/8*sqrt(2)*((a*b^3)^(3/ 
4)*B*a - 5*(a*b^3)^(3/4)*A*b)*arctan(-1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4) - 2 
*sqrt(x))/(a/b)^(1/4))/(a^3*b^3) - 1/16*sqrt(2)*((a*b^3)^(3/4)*B*a - 5*(a* 
b^3)^(3/4)*A*b)*log(sqrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqrt(a/b))/(a^3*b^3) 
 + 1/16*sqrt(2)*((a*b^3)^(3/4)*B*a - 5*(a*b^3)^(3/4)*A*b)*log(-sqrt(2)*sqr 
t(x)*(a/b)^(1/4) + x + sqrt(a/b))/(a^3*b^3)
 
3.4.80.9 Mupad [B] (verification not implemented)

Time = 5.01 (sec) , antiderivative size = 104, normalized size of antiderivative = 0.36 \[ \int \frac {A+B x^2}{x^{3/2} \left (a+b x^2\right )^2} \, dx=\frac {\mathrm {atanh}\left (\frac {b^{1/4}\,\sqrt {x}}{{\left (-a\right )}^{1/4}}\right )\,\left (5\,A\,b-B\,a\right )}{4\,{\left (-a\right )}^{9/4}\,b^{3/4}}-\frac {\mathrm {atan}\left (\frac {b^{1/4}\,\sqrt {x}}{{\left (-a\right )}^{1/4}}\right )\,\left (5\,A\,b-B\,a\right )}{4\,{\left (-a\right )}^{9/4}\,b^{3/4}}-\frac {\frac {2\,A}{a}+\frac {x^2\,\left (5\,A\,b-B\,a\right )}{2\,a^2}}{a\,\sqrt {x}+b\,x^{5/2}} \]

input
int((A + B*x^2)/(x^(3/2)*(a + b*x^2)^2),x)
 
output
(atanh((b^(1/4)*x^(1/2))/(-a)^(1/4))*(5*A*b - B*a))/(4*(-a)^(9/4)*b^(3/4)) 
 - (atan((b^(1/4)*x^(1/2))/(-a)^(1/4))*(5*A*b - B*a))/(4*(-a)^(9/4)*b^(3/4 
)) - ((2*A)/a + (x^2*(5*A*b - B*a))/(2*a^2))/(a*x^(1/2) + b*x^(5/2))